Type Objects
Perhaps one of the most important structures of the Python object system is the
structure that defines a new type: the PyTypeObject structure. Type
objects can be handled using any of the PyObject_* or
PyType_* functions, but do not offer much that’s interesting to most
Python applications. These objects are fundamental to how objects behave, so
they are very important to the interpreter itself and to any extension module
that implements new types.
Type objects are fairly large compared to most of the standard types. The reason
for the size is that each type object stores a large number of values, mostly C
function pointers, each of which implements a small part of the type’s
functionality. The fields of the type object are examined in detail in this
section. The fields will be described in the order in which they occur in the
structure.
Typedefs: unaryfunc, binaryfunc, ternaryfunc, inquiry, coercion, intargfunc,
intintargfunc, intobjargproc, intintobjargproc, objobjargproc, destructor,
freefunc, printfunc, getattrfunc, getattrofunc, setattrfunc, setattrofunc,
cmpfunc, reprfunc, hashfunc
The structure definition for PyTypeObject can be found in
Include/object.h. For convenience of reference, this repeats the
definition found there:
typedef struct _typeobject {
PyObject_VAR_HEAD
char *tp_name; /* For printing, in format "<module>.<name>" */
int tp_basicsize, tp_itemsize; /* For allocation */
/* Methods to implement standard operations */
destructor tp_dealloc;
printfunc tp_print;
getattrfunc tp_getattr;
setattrfunc tp_setattr;
cmpfunc tp_compare;
reprfunc tp_repr;
/* Method suites for standard classes */
PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;
/* More standard operations (here for binary compatibility) */
hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;
/* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;
/* Flags to define presence of optional/expanded features */
long tp_flags;
char *tp_doc; /* Documentation string */
/* Assigned meaning in release 2.0 */
/* call function for all accessible objects */
traverseproc tp_traverse;
/* delete references to contained objects */
inquiry tp_clear;
/* Assigned meaning in release 2.1 */
/* rich comparisons */
richcmpfunc tp_richcompare;
/* weak reference enabler */
long tp_weaklistoffset;
/* Added in release 2.2 */
/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;
/* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;
struct PyMemberDef *tp_members;
struct PyGetSetDef *tp_getset;
struct _typeobject *tp_base;
PyObject *tp_dict;
descrgetfunc tp_descr_get;
descrsetfunc tp_descr_set;
long tp_dictoffset;
initproc tp_init;
allocfunc tp_alloc;
newfunc tp_new;
freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject_IS_GC */
PyObject *tp_bases;
PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;
PyObject *tp_subclasses;
PyObject *tp_weaklist;
} PyTypeObject;
The type object structure extends the PyVarObject structure. The
ob_size field is used for dynamic types (created by type_new(),
usually called from a class statement). Note that PyType_Type (the
metatype) initializes tp_itemsize, which means that its instances (i.e.
type objects) must have the ob_size field.
-
PyObject* PyObject._ob_next
-
PyObject* PyObject._ob_prev
These fields are only present when the macro Py_TRACE_REFS is defined.
Their initialization to NULL is taken care of by the PyObject_HEAD_INIT
macro. For statically allocated objects, these fields always remain NULL.
For dynamically allocated objects, these two fields are used to link the object
into a doubly-linked list of all live objects on the heap. This could be used
for various debugging purposes; currently the only use is to print the objects
that are still alive at the end of a run when the environment variable
PYTHONDUMPREFS is set.
These fields are not inherited by subtypes.
-
Py_ssize_t PyObject.ob_refcnt
This is the type object’s reference count, initialized to 1 by the
PyObject_HEAD_INIT macro. Note that for statically allocated type objects,
the type’s instances (objects whose ob_type points back to the type) do
not count as references. But for dynamically allocated type objects, the
instances do count as references.
This field is not inherited by subtypes.
-
PyTypeObject* PyObject.ob_type
This is the type’s type, in other words its metatype. It is initialized by the
argument to the PyObject_HEAD_INIT macro, and its value should normally be
&PyType_Type. However, for dynamically loadable extension modules that must
be usable on Windows (at least), the compiler complains that this is not a valid
initializer. Therefore, the convention is to pass NULL to the
PyObject_HEAD_INIT macro and to initialize this field explicitly at the
start of the module’s initialization function, before doing anything else. This
is typically done like this:
Foo_Type.ob_type = &PyType_Type;
This should be done before any instances of the type are created.
PyType_Ready checks if ob_type is NULL, and if so,
initializes it: in Python 2.2, it is set to &PyType_Type; in Python 2.2.1
and later it is initialized to the ob_type field of the base class.
PyType_Ready will not change this field if it is non-zero.
In Python 2.2, this field is not inherited by subtypes. In 2.2.1, and in 2.3
and beyond, it is inherited by subtypes.
-
Py_ssize_t PyVarObject.ob_size
For statically allocated type objects, this should be initialized to zero. For
dynamically allocated type objects, this field has a special internal meaning.
This field is not inherited by subtypes.
-
char* PyTypeObject.tp_name
Pointer to a NUL-terminated string containing the name of the type. For types
that are accessible as module globals, the string should be the full module
name, followed by a dot, followed by the type name; for built-in types, it
should be just the type name. If the module is a submodule of a package, the
full package name is part of the full module name. For example, a type named
T defined in module M in subpackage Q in package P
should have the tp_name initializer "P.Q.M.T".
For dynamically allocated type objects, this should just be the type name, and
the module name explicitly stored in the type dict as the value for key
'__module__'.
For statically allocated type objects, the tp_name field should contain a dot.
Everything before the last dot is made accessible as the __module__
attribute, and everything after the last dot is made accessible as the
__name__ attribute.
If no dot is present, the entire tp_name field is made accessible as the
__name__ attribute, and the __module__ attribute is undefined
(unless explicitly set in the dictionary, as explained above). This means your
type will be impossible to pickle.
This field is not inherited by subtypes.
-
Py_ssize_t PyTypeObject.tp_basicsize
-
Py_ssize_t PyTypeObject.tp_itemsize
These fields allow calculating the size in bytes of instances of the type.
There are two kinds of types: types with fixed-length instances have a zero
tp_itemsize field, types with variable-length instances have a non-zero
tp_itemsize field. For a type with fixed-length instances, all
instances have the same size, given in tp_basicsize.
For a type with variable-length instances, the instances must have an
ob_size field, and the instance size is tp_basicsize plus N
times tp_itemsize, where N is the “length” of the object. The value of
N is typically stored in the instance’s ob_size field. There are
exceptions: for example, long ints use a negative ob_size to indicate a
negative number, and N is abs(ob_size) there. Also, the presence of an
ob_size field in the instance layout doesn’t mean that the instance
structure is variable-length (for example, the structure for the list type has
fixed-length instances, yet those instances have a meaningful ob_size
field).
The basic size includes the fields in the instance declared by the macro
PyObject_HEAD or PyObject_VAR_HEAD (whichever is used to
declare the instance struct) and this in turn includes the _ob_prev and
_ob_next fields if they are present. This means that the only correct
way to get an initializer for the tp_basicsize is to use the
sizeof operator on the struct used to declare the instance layout.
The basic size does not include the GC header size (this is new in Python 2.2;
in 2.1 and 2.0, the GC header size was included in tp_basicsize).
These fields are inherited separately by subtypes. If the base type has a
non-zero tp_itemsize, it is generally not safe to set
tp_itemsize to a different non-zero value in a subtype (though this
depends on the implementation of the base type).
A note about alignment: if the variable items require a particular alignment,
this should be taken care of by the value of tp_basicsize. Example:
suppose a type implements an array of double. tp_itemsize is
sizeof(double). It is the programmer’s responsibility that
tp_basicsize is a multiple of sizeof(double) (assuming this is the
alignment requirement for double).
-
destructor PyTypeObject.tp_dealloc
A pointer to the instance destructor function. This function must be defined
unless the type guarantees that its instances will never be deallocated (as is
the case for the singletons None and Ellipsis).
The destructor function is called by the Py_DECREF and
Py_XDECREF macros when the new reference count is zero. At this point,
the instance is still in existence, but there are no references to it. The
destructor function should free all references which the instance owns, free all
memory buffers owned by the instance (using the freeing function corresponding
to the allocation function used to allocate the buffer), and finally (as its
last action) call the type’s tp_free function. If the type is not
subtypable (doesn’t have the Py_TPFLAGS_BASETYPE flag bit set), it is
permissible to call the object deallocator directly instead of via
tp_free. The object deallocator should be the one used to allocate the
instance; this is normally PyObject_Del if the instance was allocated
using PyObject_New or PyObject_VarNew, or
PyObject_GC_Del if the instance was allocated using
PyObject_GC_New or PyObject_GC_VarNew.
This field is inherited by subtypes.
-
printfunc PyTypeObject.tp_print
An optional pointer to the instance print function.
The print function is only called when the instance is printed to a real file;
when it is printed to a pseudo-file (like a StringIO instance), the
instance’s tp_repr or tp_str function is called to convert it to
a string. These are also called when the type’s tp_print field is
NULL. A type should never implement tp_print in a way that produces
different output than tp_repr or tp_str would.
The print function is called with the same signature as PyObject_Print:
int tp_print(PyObject *self, FILE *file, int flags). The self argument is
the instance to be printed. The file argument is the stdio file to which it
is to be printed. The flags argument is composed of flag bits. The only flag
bit currently defined is Py_PRINT_RAW. When the Py_PRINT_RAW
flag bit is set, the instance should be printed the same way as tp_str
would format it; when the Py_PRINT_RAW flag bit is clear, the instance
should be printed the same was as tp_repr would format it. It should
return -1 and set an exception condition when an error occurred during the
comparison.
It is possible that the tp_print field will be deprecated. In any case,
it is recommended not to define tp_print, but instead to rely on
tp_repr and tp_str for printing.
This field is inherited by subtypes.
-
getattrfunc PyTypeObject.tp_getattr
An optional pointer to the get-attribute-string function.
This field is deprecated. When it is defined, it should point to a function
that acts the same as the tp_getattro function, but taking a C string
instead of a Python string object to give the attribute name. The signature is
the same as for PyObject_GetAttrString.
This field is inherited by subtypes together with tp_getattro: a subtype
inherits both tp_getattr and tp_getattro from its base type when
the subtype’s tp_getattr and tp_getattro are both NULL.
-
setattrfunc PyTypeObject.tp_setattr
An optional pointer to the set-attribute-string function.
This field is deprecated. When it is defined, it should point to a function
that acts the same as the tp_setattro function, but taking a C string
instead of a Python string object to give the attribute name. The signature is
the same as for PyObject_SetAttrString.
This field is inherited by subtypes together with tp_setattro: a subtype
inherits both tp_setattr and tp_setattro from its base type when
the subtype’s tp_setattr and tp_setattro are both NULL.
-
cmpfunc PyTypeObject.tp_compare
An optional pointer to the three-way comparison function.
The signature is the same as for PyObject_Compare. The function should
return 1 if self greater than other, 0 if self is equal to
other, and -1 if self less than other. It should return -1 and
set an exception condition when an error occurred during the comparison.
This field is inherited by subtypes together with tp_richcompare and
tp_hash: a subtypes inherits all three of tp_compare,
tp_richcompare, and tp_hash when the subtype’s
tp_compare, tp_richcompare, and tp_hash are all NULL.
-
reprfunc PyTypeObject.tp_repr
An optional pointer to a function that implements the built-in function
repr().
The signature is the same as for PyObject_Repr; it must return a string
or a Unicode object. Ideally, this function should return a string that, when
passed to eval(), given a suitable environment, returns an object with the
same value. If this is not feasible, it should return a string starting with
'<' and ending with '>' from which both the type and the value of the
object can be deduced.
When this field is not set, a string of the form <%s object at %p> is
returned, where %s is replaced by the type name, and %p by the object’s
memory address.
This field is inherited by subtypes.
-
PyNumberMethods* tp_as_number
Pointer to an additional structure that contains fields relevant only to
objects which implement the number protocol. These fields are documented in
Number Object Structures.
The tp_as_number field is not inherited, but the contained fields are
inherited individually.
-
PySequenceMethods* tp_as_sequence
Pointer to an additional structure that contains fields relevant only to
objects which implement the sequence protocol. These fields are documented
in Sequence Object Structures.
The tp_as_sequence field is not inherited, but the contained fields
are inherited individually.
-
PyMappingMethods* tp_as_mapping
Pointer to an additional structure that contains fields relevant only to
objects which implement the mapping protocol. These fields are documented in
Mapping Object Structures.
The tp_as_mapping field is not inherited, but the contained fields
are inherited individually.
-
hashfunc PyTypeObject.tp_hash
An optional pointer to a function that implements the built-in function
hash().
The signature is the same as for PyObject_Hash; it must return a C
long. The value -1 should not be returned as a normal return value; when an
error occurs during the computation of the hash value, the function should set
an exception and return -1.
This field can be set explicitly to PyObject_HashNotImplemented to
block inheritance of the hash method from a parent type. This is interpreted
as the equivalent of __hash__ = None at the Python level, causing
isinstance(o, collections.Hashable) to correctly return False. Note
that the converse is also true - setting __hash__ = None on a class at
the Python level will result in the tp_hash slot being set to
PyObject_HashNotImplemented.
When this field is not set, two possibilities exist: if the tp_compare
and tp_richcompare fields are both NULL, a default hash value based on
the object’s address is returned; otherwise, a TypeError is raised.
This field is inherited by subtypes together with tp_richcompare and
tp_compare: a subtypes inherits all three of tp_compare,
tp_richcompare, and tp_hash, when the subtype’s
tp_compare, tp_richcompare and tp_hash are all NULL.
-
ternaryfunc PyTypeObject.tp_call
An optional pointer to a function that implements calling the object. This
should be NULL if the object is not callable. The signature is the same as
for PyObject_Call.
This field is inherited by subtypes.
-
reprfunc PyTypeObject.tp_str
An optional pointer to a function that implements the built-in operation
str(). (Note that str is a type now, and str() calls the
constructor for that type. This constructor calls PyObject_Str to do
the actual work, and PyObject_Str will call this handler.)
The signature is the same as for PyObject_Str; it must return a string
or a Unicode object. This function should return a “friendly” string
representation of the object, as this is the representation that will be used by
the print statement.
When this field is not set, PyObject_Repr is called to return a string
representation.
This field is inherited by subtypes.
-
getattrofunc PyTypeObject.tp_getattro
An optional pointer to the get-attribute function.
The signature is the same as for PyObject_GetAttr. It is usually
convenient to set this field to PyObject_GenericGetAttr, which
implements the normal way of looking for object attributes.
This field is inherited by subtypes together with tp_getattr: a subtype
inherits both tp_getattr and tp_getattro from its base type when
the subtype’s tp_getattr and tp_getattro are both NULL.
-
setattrofunc PyTypeObject.tp_setattro
An optional pointer to the set-attribute function.
The signature is the same as for PyObject_SetAttr. It is usually
convenient to set this field to PyObject_GenericSetAttr, which
implements the normal way of setting object attributes.
This field is inherited by subtypes together with tp_setattr: a subtype
inherits both tp_setattr and tp_setattro from its base type when
the subtype’s tp_setattr and tp_setattro are both NULL.
-
PyBufferProcs* PyTypeObject.tp_as_buffer
Pointer to an additional structure that contains fields relevant only to objects
which implement the buffer interface. These fields are documented in
Buffer Object Structures.
The tp_as_buffer field is not inherited, but the contained fields are
inherited individually.
-
long PyTypeObject.tp_flags
This field is a bit mask of various flags. Some flags indicate variant
semantics for certain situations; others are used to indicate that certain
fields in the type object (or in the extension structures referenced via
tp_as_number, tp_as_sequence, tp_as_mapping, and
tp_as_buffer) that were historically not always present are valid; if
such a flag bit is clear, the type fields it guards must not be accessed and
must be considered to have a zero or NULL value instead.
Inheritance of this field is complicated. Most flag bits are inherited
individually, i.e. if the base type has a flag bit set, the subtype inherits
this flag bit. The flag bits that pertain to extension structures are strictly
inherited if the extension structure is inherited, i.e. the base type’s value of
the flag bit is copied into the subtype together with a pointer to the extension
structure. The Py_TPFLAGS_HAVE_GC flag bit is inherited together with
the tp_traverse and tp_clear fields, i.e. if the
Py_TPFLAGS_HAVE_GC flag bit is clear in the subtype and the
tp_traverse and tp_clear fields in the subtype exist (as
indicated by the Py_TPFLAGS_HAVE_RICHCOMPARE flag bit) and have NULL
values.
The following bit masks are currently defined; these can be ORed together using
the | operator to form the value of the tp_flags field. The macro
PyType_HasFeature takes a type and a flags value, tp and f, and
checks whether tp->tp_flags & f is non-zero.
-
Py_TPFLAGS_HAVE_GETCHARBUFFER
- If this bit is set, the PyBufferProcs struct referenced by
tp_as_buffer has the bf_getcharbuffer field.
-
Py_TPFLAGS_HAVE_SEQUENCE_IN
- If this bit is set, the PySequenceMethods struct referenced by
tp_as_sequence has the sq_contains field.
-
Py_TPFLAGS_GC
- This bit is obsolete. The bit it used to name is no longer in use. The symbol
is now defined as zero.
-
Py_TPFLAGS_HAVE_INPLACEOPS
- If this bit is set, the PySequenceMethods struct referenced by
tp_as_sequence and the PyNumberMethods structure referenced by
tp_as_number contain the fields for in-place operators. In particular,
this means that the PyNumberMethods structure has the fields
nb_inplace_add, nb_inplace_subtract,
nb_inplace_multiply, nb_inplace_divide,
nb_inplace_remainder, nb_inplace_power,
nb_inplace_lshift, nb_inplace_rshift, nb_inplace_and,
nb_inplace_xor, and nb_inplace_or; and the
PySequenceMethods struct has the fields sq_inplace_concat and
sq_inplace_repeat.
-
Py_TPFLAGS_CHECKTYPES
- If this bit is set, the binary and ternary operations in the
PyNumberMethods structure referenced by tp_as_number accept
arguments of arbitrary object types, and do their own type conversions if
needed. If this bit is clear, those operations require that all arguments have
the current type as their type, and the caller is supposed to perform a coercion
operation first. This applies to nb_add, nb_subtract,
nb_multiply, nb_divide, nb_remainder, nb_divmod,
nb_power, nb_lshift, nb_rshift, nb_and,
nb_xor, and nb_or.
-
Py_TPFLAGS_HAVE_RICHCOMPARE
- If this bit is set, the type object has the tp_richcompare field, as
well as the tp_traverse and the tp_clear fields.
-
Py_TPFLAGS_HAVE_WEAKREFS
- If this bit is set, the tp_weaklistoffset field is defined. Instances
of a type are weakly referenceable if the type’s tp_weaklistoffset field
has a value greater than zero.
-
Py_TPFLAGS_HAVE_ITER
- If this bit is set, the type object has the tp_iter and
tp_iternext fields.
-
Py_TPFLAGS_HAVE_CLASS
- If this bit is set, the type object has several new fields defined starting in
Python 2.2: tp_methods, tp_members, tp_getset,
tp_base, tp_dict, tp_descr_get, tp_descr_set,
tp_dictoffset, tp_init, tp_alloc, tp_new,
tp_free, tp_is_gc, tp_bases, tp_mro,
tp_cache, tp_subclasses, and tp_weaklist.
-
Py_TPFLAGS_HEAPTYPE
- This bit is set when the type object itself is allocated on the heap. In this
case, the ob_type field of its instances is considered a reference to
the type, and the type object is INCREF’ed when a new instance is created, and
DECREF’ed when an instance is destroyed (this does not apply to instances of
subtypes; only the type referenced by the instance’s ob_type gets INCREF’ed or
DECREF’ed).
-
Py_TPFLAGS_BASETYPE
- This bit is set when the type can be used as the base type of another type. If
this bit is clear, the type cannot be subtyped (similar to a “final” class in
Java).
-
Py_TPFLAGS_READY
- This bit is set when the type object has been fully initialized by
PyType_Ready.
-
Py_TPFLAGS_READYING
- This bit is set while PyType_Ready is in the process of initializing
the type object.
-
Py_TPFLAGS_HAVE_GC
- This bit is set when the object supports garbage collection. If this bit
is set, instances must be created using PyObject_GC_New and
destroyed using PyObject_GC_Del. More information in section
Supporting Cyclic Garbage Collection. This bit also implies that the
GC-related fields tp_traverse and tp_clear are present in
the type object; but those fields also exist when
Py_TPFLAGS_HAVE_GC is clear but
Py_TPFLAGS_HAVE_RICHCOMPARE is set.
-
Py_TPFLAGS_DEFAULT
- This is a bitmask of all the bits that pertain to the existence of certain
fields in the type object and its extension structures. Currently, it includes
the following bits: Py_TPFLAGS_HAVE_GETCHARBUFFER,
Py_TPFLAGS_HAVE_SEQUENCE_IN, Py_TPFLAGS_HAVE_INPLACEOPS,
Py_TPFLAGS_HAVE_RICHCOMPARE, Py_TPFLAGS_HAVE_WEAKREFS,
Py_TPFLAGS_HAVE_ITER, and Py_TPFLAGS_HAVE_CLASS.
-
char* PyTypeObject.tp_doc
An optional pointer to a NUL-terminated C string giving the docstring for this
type object. This is exposed as the __doc__ attribute on the type and
instances of the type.
This field is not inherited by subtypes.
The following three fields only exist if the
Py_TPFLAGS_HAVE_RICHCOMPARE flag bit is set.
-
traverseproc PyTypeObject.tp_traverse
An optional pointer to a traversal function for the garbage collector. This is
only used if the Py_TPFLAGS_HAVE_GC flag bit is set. More information
about Python’s garbage collection scheme can be found in section
Supporting Cyclic Garbage Collection.
The tp_traverse pointer is used by the garbage collector to detect
reference cycles. A typical implementation of a tp_traverse function
simply calls Py_VISIT on each of the instance’s members that are Python
objects. For example, this is function local_traverse from the
thread extension module:
static int
local_traverse(localobject *self, visitproc visit, void *arg)
{
Py_VISIT(self->args);
Py_VISIT(self->kw);
Py_VISIT(self->dict);
return 0;
}
Note that Py_VISIT is called only on those members that can participate
in reference cycles. Although there is also a self->key member, it can only
be NULL or a Python string and therefore cannot be part of a reference cycle.
On the other hand, even if you know a member can never be part of a cycle, as a
debugging aid you may want to visit it anyway just so the gc module’s
get_referents() function will include it.
Note that Py_VISIT requires the visit and arg parameters to
local_traverse to have these specific names; don’t name them just
anything.
This field is inherited by subtypes together with tp_clear and the
Py_TPFLAGS_HAVE_GC flag bit: the flag bit, tp_traverse, and
tp_clear are all inherited from the base type if they are all zero in
the subtype and the subtype has the Py_TPFLAGS_HAVE_RICHCOMPARE flag
bit set.
-
inquiry PyTypeObject.tp_clear
An optional pointer to a clear function for the garbage collector. This is only
used if the Py_TPFLAGS_HAVE_GC flag bit is set.
The tp_clear member function is used to break reference cycles in cyclic
garbage detected by the garbage collector. Taken together, all tp_clear
functions in the system must combine to break all reference cycles. This is
subtle, and if in any doubt supply a tp_clear function. For example,
the tuple type does not implement a tp_clear function, because it’s
possible to prove that no reference cycle can be composed entirely of tuples.
Therefore the tp_clear functions of other types must be sufficient to
break any cycle containing a tuple. This isn’t immediately obvious, and there’s
rarely a good reason to avoid implementing tp_clear.
Implementations of tp_clear should drop the instance’s references to
those of its members that may be Python objects, and set its pointers to those
members to NULL, as in the following example:
static int
local_clear(localobject *self)
{
Py_CLEAR(self->key);
Py_CLEAR(self->args);
Py_CLEAR(self->kw);
Py_CLEAR(self->dict);
return 0;
}
The Py_CLEAR macro should be used, because clearing references is
delicate: the reference to the contained object must not be decremented until
after the pointer to the contained object is set to NULL. This is because
decrementing the reference count may cause the contained object to become trash,
triggering a chain of reclamation activity that may include invoking arbitrary
Python code (due to finalizers, or weakref callbacks, associated with the
contained object). If it’s possible for such code to reference self again,
it’s important that the pointer to the contained object be NULL at that time,
so that self knows the contained object can no longer be used. The
Py_CLEAR macro performs the operations in a safe order.
Because the goal of tp_clear functions is to break reference cycles,
it’s not necessary to clear contained objects like Python strings or Python
integers, which can’t participate in reference cycles. On the other hand, it may
be convenient to clear all contained Python objects, and write the type’s
tp_dealloc function to invoke tp_clear.
More information about Python’s garbage collection scheme can be found in
section Supporting Cyclic Garbage Collection.
This field is inherited by subtypes together with tp_traverse and the
Py_TPFLAGS_HAVE_GC flag bit: the flag bit, tp_traverse, and
tp_clear are all inherited from the base type if they are all zero in
the subtype and the subtype has the Py_TPFLAGS_HAVE_RICHCOMPARE flag
bit set.
-
richcmpfunc PyTypeObject.tp_richcompare
An optional pointer to the rich comparison function, whose signature is
PyObject *tp_richcompare(PyObject *a, PyObject *b, int op).
The function should return the result of the comparison (usually Py_True
or Py_False). If the comparison is undefined, it must return
Py_NotImplemented, if another error occurred it must return NULL and
set an exception condition.
Note
If you want to implement a type for which only a limited set of
comparisons makes sense (e.g. == and !=, but not < and
friends), directly raise TypeError in the rich comparison function.
This field is inherited by subtypes together with tp_compare and
tp_hash: a subtype inherits all three of tp_compare,
tp_richcompare, and tp_hash, when the subtype’s
tp_compare, tp_richcompare, and tp_hash are all NULL.
The following constants are defined to be used as the third argument for
tp_richcompare and for PyObject_RichCompare:
Constant |
Comparison |
Py_LT |
< |
Py_LE |
<= |
Py_EQ |
== |
Py_NE |
!= |
Py_GT |
> |
Py_GE |
>= |
The next field only exists if the Py_TPFLAGS_HAVE_WEAKREFS flag bit is
set.
-
long PyTypeObject.tp_weaklistoffset
If the instances of this type are weakly referenceable, this field is greater
than zero and contains the offset in the instance structure of the weak
reference list head (ignoring the GC header, if present); this offset is used by
PyObject_ClearWeakRefs and the PyWeakref_* functions. The
instance structure needs to include a field of type PyObject* which is
initialized to NULL.
Do not confuse this field with tp_weaklist; that is the list head for
weak references to the type object itself.
This field is inherited by subtypes, but see the rules listed below. A subtype
may override this offset; this means that the subtype uses a different weak
reference list head than the base type. Since the list head is always found via
tp_weaklistoffset, this should not be a problem.
When a type defined by a class statement has no __slots__ declaration,
and none of its base types are weakly referenceable, the type is made weakly
referenceable by adding a weak reference list head slot to the instance layout
and setting the tp_weaklistoffset of that slot’s offset.
When a type’s __slots__ declaration contains a slot named
__weakref__, that slot becomes the weak reference list head for
instances of the type, and the slot’s offset is stored in the type’s
tp_weaklistoffset.
When a type’s __slots__ declaration does not contain a slot named
__weakref__, the type inherits its tp_weaklistoffset from its
base type.
The next two fields only exist if the Py_TPFLAGS_HAVE_CLASS flag bit is
set.
-
getiterfunc PyTypeObject.tp_iter
An optional pointer to a function that returns an iterator for the object. Its
presence normally signals that the instances of this type are iterable (although
sequences may be iterable without this function, and classic instances always
have this function, even if they don’t define an __iter__() method).
This function has the same signature as PyObject_GetIter.
This field is inherited by subtypes.
-
iternextfunc PyTypeObject.tp_iternext
An optional pointer to a function that returns the next item in an iterator.
When the iterator is exhausted, it must return NULL; a StopIteration
exception may or may not be set. When another error occurs, it must return
NULL too. Its presence normally signals that the instances of this type
are iterators (although classic instances always have this function, even if
they don’t define a next() method).
Iterator types should also define the tp_iter function, and that
function should return the iterator instance itself (not a new iterator
instance).
This function has the same signature as PyIter_Next.
This field is inherited by subtypes.
The next fields, up to and including tp_weaklist, only exist if the
Py_TPFLAGS_HAVE_CLASS flag bit is set.
-
struct PyMethodDef* PyTypeObject.tp_methods
An optional pointer to a static NULL-terminated array of PyMethodDef
structures, declaring regular methods of this type.
For each entry in the array, an entry is added to the type’s dictionary (see
tp_dict below) containing a method descriptor.
This field is not inherited by subtypes (methods are inherited through a
different mechanism).
-
struct PyMemberDef* PyTypeObject.tp_members
An optional pointer to a static NULL-terminated array of PyMemberDef
structures, declaring regular data members (fields or slots) of instances of
this type.
For each entry in the array, an entry is added to the type’s dictionary (see
tp_dict below) containing a member descriptor.
This field is not inherited by subtypes (members are inherited through a
different mechanism).
-
struct PyGetSetDef* PyTypeObject.tp_getset
An optional pointer to a static NULL-terminated array of PyGetSetDef
structures, declaring computed attributes of instances of this type.
For each entry in the array, an entry is added to the type’s dictionary (see
tp_dict below) containing a getset descriptor.
This field is not inherited by subtypes (computed attributes are inherited
through a different mechanism).
Docs for PyGetSetDef (XXX belong elsewhere):
typedef PyObject *(*getter)(PyObject *, void *);
typedef int (*setter)(PyObject *, PyObject *, void *);
typedef struct PyGetSetDef {
char *name; /* attribute name */
getter get; /* C function to get the attribute */
setter set; /* C function to set the attribute */
char *doc; /* optional doc string */
void *closure; /* optional additional data for getter and setter */
} PyGetSetDef;
-
PyTypeObject* PyTypeObject.tp_base
An optional pointer to a base type from which type properties are inherited. At
this level, only single inheritance is supported; multiple inheritance require
dynamically creating a type object by calling the metatype.
This field is not inherited by subtypes (obviously), but it defaults to
&PyBaseObject_Type (which to Python programmers is known as the type
object).
-
PyObject* PyTypeObject.tp_dict
The type’s dictionary is stored here by PyType_Ready.
This field should normally be initialized to NULL before PyType_Ready is
called; it may also be initialized to a dictionary containing initial attributes
for the type. Once PyType_Ready has initialized the type, extra
attributes for the type may be added to this dictionary only if they don’t
correspond to overloaded operations (like __add__()).
This field is not inherited by subtypes (though the attributes defined in here
are inherited through a different mechanism).
-
descrgetfunc PyTypeObject.tp_descr_get
An optional pointer to a “descriptor get” function.
The function signature is
PyObject * tp_descr_get(PyObject *self, PyObject *obj, PyObject *type);
XXX explain.
This field is inherited by subtypes.
-
descrsetfunc PyTypeObject.tp_descr_set
An optional pointer to a “descriptor set” function.
The function signature is
int tp_descr_set(PyObject *self, PyObject *obj, PyObject *value);
This field is inherited by subtypes.
XXX explain.
-
long PyTypeObject.tp_dictoffset
If the instances of this type have a dictionary containing instance variables,
this field is non-zero and contains the offset in the instances of the type of
the instance variable dictionary; this offset is used by
PyObject_GenericGetAttr.
Do not confuse this field with tp_dict; that is the dictionary for
attributes of the type object itself.
If the value of this field is greater than zero, it specifies the offset from
the start of the instance structure. If the value is less than zero, it
specifies the offset from the end of the instance structure. A negative
offset is more expensive to use, and should only be used when the instance
structure contains a variable-length part. This is used for example to add an
instance variable dictionary to subtypes of str or tuple. Note
that the tp_basicsize field should account for the dictionary added to
the end in that case, even though the dictionary is not included in the basic
object layout. On a system with a pointer size of 4 bytes,
tp_dictoffset should be set to -4 to indicate that the dictionary is
at the very end of the structure.
The real dictionary offset in an instance can be computed from a negative
tp_dictoffset as follows:
dictoffset = tp_basicsize + abs(ob_size)*tp_itemsize + tp_dictoffset
if dictoffset is not aligned on sizeof(void*):
round up to sizeof(void*)
where tp_basicsize, tp_itemsize and tp_dictoffset are
taken from the type object, and ob_size is taken from the instance. The
absolute value is taken because long ints use the sign of ob_size to
store the sign of the number. (There’s never a need to do this calculation
yourself; it is done for you by _PyObject_GetDictPtr.)
This field is inherited by subtypes, but see the rules listed below. A subtype
may override this offset; this means that the subtype instances store the
dictionary at a difference offset than the base type. Since the dictionary is
always found via tp_dictoffset, this should not be a problem.
When a type defined by a class statement has no __slots__ declaration,
and none of its base types has an instance variable dictionary, a dictionary
slot is added to the instance layout and the tp_dictoffset is set to
that slot’s offset.
When a type defined by a class statement has a __slots__ declaration,
the type inherits its tp_dictoffset from its base type.
(Adding a slot named __dict__ to the __slots__ declaration does
not have the expected effect, it just causes confusion. Maybe this should be
added as a feature just like __weakref__ though.)
-
initproc PyTypeObject.tp_init
An optional pointer to an instance initialization function.
This function corresponds to the __init__() method of classes. Like
__init__(), it is possible to create an instance without calling
__init__(), and it is possible to reinitialize an instance by calling its
__init__() method again.
The function signature is
int tp_init(PyObject *self, PyObject *args, PyObject *kwds)
The self argument is the instance to be initialized; the args and kwds
arguments represent positional and keyword arguments of the call to
__init__().
The tp_init function, if not NULL, is called when an instance is
created normally by calling its type, after the type’s tp_new function
has returned an instance of the type. If the tp_new function returns an
instance of some other type that is not a subtype of the original type, no
tp_init function is called; if tp_new returns an instance of a
subtype of the original type, the subtype’s tp_init is called. (VERSION
NOTE: described here is what is implemented in Python 2.2.1 and later. In
Python 2.2, the tp_init of the type of the object returned by
tp_new was always called, if not NULL.)
This field is inherited by subtypes.
-
allocfunc PyTypeObject.tp_alloc
An optional pointer to an instance allocation function.
The function signature is
PyObject *tp_alloc(PyTypeObject *self, Py_ssize_t nitems)
The purpose of this function is to separate memory allocation from memory
initialization. It should return a pointer to a block of memory of adequate
length for the instance, suitably aligned, and initialized to zeros, but with
ob_refcnt set to 1 and ob_type set to the type argument. If
the type’s tp_itemsize is non-zero, the object’s ob_size field
should be initialized to nitems and the length of the allocated memory block
should be tp_basicsize + nitems*tp_itemsize, rounded up to a multiple of
sizeof(void*); otherwise, nitems is not used and the length of the block
should be tp_basicsize.
Do not use this function to do any other instance initialization, not even to
allocate additional memory; that should be done by tp_new.
This field is inherited by static subtypes, but not by dynamic subtypes
(subtypes created by a class statement); in the latter, this field is always set
to PyType_GenericAlloc, to force a standard heap allocation strategy.
That is also the recommended value for statically defined types.
-
newfunc PyTypeObject.tp_new
An optional pointer to an instance creation function.
If this function is NULL for a particular type, that type cannot be called to
create new instances; presumably there is some other way to create instances,
like a factory function.
The function signature is
PyObject *tp_new(PyTypeObject *subtype, PyObject *args, PyObject *kwds)
The subtype argument is the type of the object being created; the args and
kwds arguments represent positional and keyword arguments of the call to the
type. Note that subtype doesn’t have to equal the type whose tp_new
function is called; it may be a subtype of that type (but not an unrelated
type).
The tp_new function should call subtype->tp_alloc(subtype, nitems)
to allocate space for the object, and then do only as much further
initialization as is absolutely necessary. Initialization that can safely be
ignored or repeated should be placed in the tp_init handler. A good
rule of thumb is that for immutable types, all initialization should take place
in tp_new, while for mutable types, most initialization should be
deferred to tp_init.
This field is inherited by subtypes, except it is not inherited by static types
whose tp_base is NULL or &PyBaseObject_Type. The latter exception
is a precaution so that old extension types don’t become callable simply by
being linked with Python 2.2.
-
destructor PyTypeObject.tp_free
An optional pointer to an instance deallocation function.
The signature of this function has changed slightly: in Python 2.2 and 2.2.1,
its signature is destructor:
In Python 2.3 and beyond, its signature is freefunc:
The only initializer that is compatible with both versions is _PyObject_Del,
whose definition has suitably adapted in Python 2.3.
This field is inherited by static subtypes, but not by dynamic subtypes
(subtypes created by a class statement); in the latter, this field is set to a
deallocator suitable to match PyType_GenericAlloc and the value of the
Py_TPFLAGS_HAVE_GC flag bit.
-
inquiry PyTypeObject.tp_is_gc
An optional pointer to a function called by the garbage collector.
The garbage collector needs to know whether a particular object is collectible
or not. Normally, it is sufficient to look at the object’s type’s
tp_flags field, and check the Py_TPFLAGS_HAVE_GC flag bit. But
some types have a mixture of statically and dynamically allocated instances, and
the statically allocated instances are not collectible. Such types should
define this function; it should return 1 for a collectible instance, and
0 for a non-collectible instance. The signature is
int tp_is_gc(PyObject *self)
(The only example of this are types themselves. The metatype,
PyType_Type, defines this function to distinguish between statically
and dynamically allocated types.)
This field is inherited by subtypes. (VERSION NOTE: in Python 2.2, it was not
inherited. It is inherited in 2.2.1 and later versions.)
-
PyObject* PyTypeObject.tp_bases
Tuple of base types.
This is set for types created by a class statement. It should be NULL for
statically defined types.
This field is not inherited.
-
PyObject* PyTypeObject.tp_mro
Tuple containing the expanded set of base types, starting with the type itself
and ending with object, in Method Resolution Order.
This field is not inherited; it is calculated fresh by PyType_Ready.
-
PyObject* PyTypeObject.tp_cache
- Unused. Not inherited. Internal use only.
-
PyObject* PyTypeObject.tp_subclasses
- List of weak references to subclasses. Not inherited. Internal use only.
-
PyObject* PyTypeObject.tp_weaklist
- Weak reference list head, for weak references to this type object. Not
inherited. Internal use only.
The remaining fields are only defined if the feature test macro
COUNT_ALLOCS is defined, and are for internal use only. They are
documented here for completeness. None of these fields are inherited by
subtypes.
-
Py_ssize_t PyTypeObject.tp_allocs
- Number of allocations.
-
Py_ssize_t PyTypeObject.tp_frees
- Number of frees.
-
Py_ssize_t PyTypeObject.tp_maxalloc
- Maximum simultaneously allocated objects.
-
PyTypeObject* PyTypeObject.tp_next
- Pointer to the next type object with a non-zero tp_allocs field.
Also, note that, in a garbage collected Python, tp_dealloc may be called from
any Python thread, not just the thread which created the object (if the object
becomes part of a refcount cycle, that cycle might be collected by a garbage
collection on any thread). This is not a problem for Python API calls, since
the thread on which tp_dealloc is called will own the Global Interpreter Lock
(GIL). However, if the object being destroyed in turn destroys objects from some
other C or C++ library, care should be taken to ensure that destroying those
objects on the thread which called tp_dealloc will not violate any assumptions
of the library.
Number Object Structures
-
PyNumberMethods
This structure holds pointers to the functions which an object uses to
implement the number protocol. Almost every function below is used by the
function of similar name documented in the Number Protocol section.
Here is the structure definition:
typedef struct {
binaryfunc nb_add;
binaryfunc nb_subtract;
binaryfunc nb_multiply;
binaryfunc nb_remainder;
binaryfunc nb_divmod;
ternaryfunc nb_power;
unaryfunc nb_negative;
unaryfunc nb_positive;
unaryfunc nb_absolute;
inquiry nb_nonzero; /* Used by PyObject_IsTrue */
unaryfunc nb_invert;
binaryfunc nb_lshift;
binaryfunc nb_rshift;
binaryfunc nb_and;
binaryfunc nb_xor;
binaryfunc nb_or;
coercion nb_coerce; /* Used by the coerce() function */
unaryfunc nb_int;
unaryfunc nb_long;
unaryfunc nb_float;
unaryfunc nb_oct;
unaryfunc nb_hex;
/* Added in release 2.0 */
binaryfunc nb_inplace_add;
binaryfunc nb_inplace_subtract;
binaryfunc nb_inplace_multiply;
binaryfunc nb_inplace_remainder;
ternaryfunc nb_inplace_power;
binaryfunc nb_inplace_lshift;
binaryfunc nb_inplace_rshift;
binaryfunc nb_inplace_and;
binaryfunc nb_inplace_xor;
binaryfunc nb_inplace_or;
/* Added in release 2.2 */
binaryfunc nb_floor_divide;
binaryfunc nb_true_divide;
binaryfunc nb_inplace_floor_divide;
binaryfunc nb_inplace_true_divide;
/* Added in release 2.5 */
unaryfunc nb_index;
} PyNumberMethods;
Binary and ternary functions may receive different kinds of arguments, depending
on the flag bit Py_TPFLAGS_CHECKTYPES:
If Py_TPFLAGS_CHECKTYPES is not set, the function arguments are
guaranteed to be of the object’s type; the caller is responsible for calling
the coercion method specified by the nb_coerce member to convert the
arguments:
-
coercion PyNumberMethods.nb_coerce
This function is used by PyNumber_CoerceEx and has the same
signature. The first argument is always a pointer to an object of the
defined type. If the conversion to a common “larger” type is possible, the
function replaces the pointers with new references to the converted objects
and returns 0. If the conversion is not possible, the function returns
1. If an error condition is set, it will return -1.
If the Py_TPFLAGS_CHECKTYPES flag is set, binary and ternary
functions must check the type of all their operands, and implement the
necessary conversions (at least one of the operands is an instance of the
defined type). This is the recommended way; with Python 3.0 coercion will
disappear completely.
If the operation is not defined for the given operands, binary and ternary
functions must return Py_NotImplemented, if another error occurred they must
return NULL and set an exception.
Mapping Object Structures
-
PyMappingMethods
- This structure holds pointers to the functions which an object uses to
implement the mapping protocol. It has three members:
-
lenfunc PyMappingMethods.mp_length
- This function is used by PyMapping_Length and
PyObject_Size, and has the same signature. This slot may be set to
NULL if the object has no defined length.
-
binaryfunc PyMappingMethods.mp_subscript
- This function is used by PyObject_GetItem and has the same
signature. This slot must be filled for the PyMapping_Check
function to return 1, it can be NULL otherwise.
-
objobjargproc PyMappingMethods.mp_ass_subscript
- This function is used by PyObject_SetItem and has the same
signature. If this slot is NULL, the object does not support item
assignment.
Sequence Object Structures
-
PySequenceMethods
- This structure holds pointers to the functions which an object uses to
implement the sequence protocol.
-
lenfunc PySequenceMethods.sq_length
- This function is used by PySequence_Size and PyObject_Size,
and has the same signature.
-
binaryfunc PySequenceMethods.sq_concat
- This function is used by PySequence_Concat and has the same
signature. It is also used by the + operator, after trying the numeric
addition via the tp_as_number.nb_add slot.
-
ssizeargfunc PySequenceMethods.sq_repeat
- This function is used by PySequence_Repeat and has the same
signature. It is also used by the * operator, after trying numeric
multiplication via the tp_as_number.nb_mul slot.
-
ssizeargfunc PySequenceMethods.sq_item
This function is used by PySequence_GetItem and has the same
signature. This slot must be filled for the PySequence_Check
function to return 1, it can be NULL otherwise.
Negative indexes are handled as follows: if the sq_length slot is
filled, it is called and the sequence length is used to compute a positive
index which is passed to sq_item. If sq_length is NULL,
the index is passed as is to the function.
-
ssizeobjargproc PySequenceMethods.sq_ass_item
- This function is used by PySequence_SetItem and has the same
signature. This slot may be left to NULL if the object does not support
item assignment.
-
objobjproc PySequenceMethods.sq_contains
- This function may be used by PySequence_Contains and has the same
signature. This slot may be left to NULL, in this case
PySequence_Contains simply traverses the sequence until it finds a
match.
-
binaryfunc PySequenceMethods.sq_inplace_concat
- This function is used by PySequence_InPlaceConcat and has the same
signature. It should modify its first operand, and return it.
-
ssizeargfunc PySequenceMethods.sq_inplace_repeat
- This function is used by PySequence_InPlaceRepeat and has the same
signature. It should modify its first operand, and return it.
Buffer Object Structures
The buffer interface exports a model where an object can expose its internal
data as a set of chunks of data, where each chunk is specified as a
pointer/length pair. These chunks are called segments and are presumed
to be non-contiguous in memory.
If an object does not export the buffer interface, then its tp_as_buffer
member in the PyTypeObject structure should be NULL. Otherwise, the
tp_as_buffer will point to a PyBufferProcs structure.
Note
It is very important that your PyTypeObject structure uses
Py_TPFLAGS_DEFAULT for the value of the tp_flags member rather
than 0. This tells the Python runtime that your PyBufferProcs
structure contains the bf_getcharbuffer slot. Older versions of Python
did not have this member, so a new Python interpreter using an old extension
needs to be able to test for its presence before using it.
-
PyBufferProcs
Structure used to hold the function pointers which define an implementation of
the buffer protocol.
The first slot is bf_getreadbuffer, of type getreadbufferproc.
If this slot is NULL, then the object does not support reading from the
internal data. This is non-sensical, so implementors should fill this in, but
callers should test that the slot contains a non-NULL value.
The next slot is bf_getwritebuffer having type
getwritebufferproc. This slot may be NULL if the object does not
allow writing into its returned buffers.
The third slot is bf_getsegcount, with type getsegcountproc.
This slot must not be NULL and is used to inform the caller how many segments
the object contains. Simple objects such as PyString_Type and
PyBuffer_Type objects contain a single segment.
The last slot is bf_getcharbuffer, of type getcharbufferproc.
This slot will only be present if the Py_TPFLAGS_HAVE_GETCHARBUFFER
flag is present in the tp_flags field of the object’s
PyTypeObject. Before using this slot, the caller should test whether it
is present by using the PyType_HasFeature function. If the flag is
present, bf_getcharbuffer may be NULL, indicating that the object’s
contents cannot be used as 8-bit characters. The slot function may also raise
an error if the object’s contents cannot be interpreted as 8-bit characters.
For example, if the object is an array which is configured to hold floating
point values, an exception may be raised if a caller attempts to use
bf_getcharbuffer to fetch a sequence of 8-bit characters. This notion of
exporting the internal buffers as “text” is used to distinguish between objects
that are binary in nature, and those which have character-based content.
Note
The current policy seems to state that these characters may be multi-byte
characters. This implies that a buffer size of N does not mean there are N
characters present.
-
Py_TPFLAGS_HAVE_GETCHARBUFFER
- Flag bit set in the type structure to indicate that the bf_getcharbuffer
slot is known. This being set does not indicate that the object supports the
buffer interface or that the bf_getcharbuffer slot is non-NULL.
-
Py_ssize_t (*readbufferproc)(PyObject *self, Py_ssize_t segment, void **ptrptr)
- Return a pointer to a readable segment of the buffer in *ptrptr. This
function is allowed to raise an exception, in which case it must return -1.
The segment which is specified must be zero or positive, and strictly less
than the number of segments returned by the bf_getsegcount slot
function. On success, it returns the length of the segment, and sets
*ptrptr to a pointer to that memory.
-
Py_ssize_t (*writebufferproc)(PyObject *self, Py_ssize_t segment, void **ptrptr)
- Return a pointer to a writable memory buffer in *ptrptr, and the length of
that segment as the function return value. The memory buffer must correspond to
buffer segment segment. Must return -1 and set an exception on error.
TypeError should be raised if the object only supports read-only buffers,
and SystemError should be raised when segment specifies a segment that
doesn’t exist.
-
Py_ssize_t (*segcountproc)(PyObject *self, Py_ssize_t *lenp)
- Return the number of memory segments which comprise the buffer. If lenp is
not NULL, the implementation must report the sum of the sizes (in bytes) of
all segments in *lenp. The function cannot fail.
-
Py_ssize_t (*charbufferproc)(PyObject *self, Py_ssize_t segment, const char **ptrptr)
- Return the size of the segment segment that ptrptr is set to. *ptrptr
is set to the memory buffer. Returns -1 on error.
|